久久伊人导航,国内精品久久久久久久久久清纯,欧美日韩不卡在线,国产精品免费av片在线观看,精品一区二区三区国产,国产精品9999,午夜一级片,99riav精品免费视频观看

    航空航天學(xué)院關(guān)于普林斯頓大學(xué)Lee Chung- Yi教授學(xué)術(shù)報(bào)告的通知

    發(fā)布日期:2010-12-01來(lái)源:航空航天學(xué)院作者:系統(tǒng)管理員訪問(wèn)量:12459

    時(shí)間:2010年12月3號(hào)下午15:00pm—17:00pm
    地點(diǎn):浙江大學(xué)玉泉校區(qū)教十二118室
    題目:Theory of Vibrations of Plates:Its Evolution and Applications to Piezoelectric Crystals and Ceramics
    報(bào)告人:Professor Emeritus of Civil and Environmental Engineering
    主持人:陳偉球教授 
     
     
    Theory of Vibrations of Plates: Its Evolution and Applications to
    Piezoelectric Crystals and Ceramics
     
    P. C. Y. Lee (Lee Chung- Yi)
    Professor Emeritus of Civil and Environmental Engineering
    Princeton University
    Princeton, NJ 08540
     
     
      In 1809, the French Academy invited Chladni to give a demonstration of his experiments on nodal lines and frequencies of various modes of thin, vibrating plates. It was said that the emperor Napolean attended the meeting, was very impressed, and suggested the Academy to establish an extraordinary prize for the “ problem of deriving a mathematical theory of plate vibration and of comparing theoretical results with those obtained experimentally ”(1). Sophie Germain entered the competition and won the prize in 1816. Thus, the classical equation of flexural vibrations of elastic plates or the Germain- Lagrange plate equation (1811-1816) was born (2). The application of the theory was limited to waves which are long as compared to the thickness of the plate and to frequencies of low-order modes. These limitations are similar to those for the classical equation of flexural vibrations of beams or the Bernoulli-Euler beam equation (1725-1736).
    In the case of beam theory, it was Timoshenko (1921) who made significant advancement by including transverse shear deformation and introducing a shear correction factor in his derivation. His equation gives satisfactory results for short waves and high modes and since is called the Timoshenko beam equation (3). Analogous to Timoshenko’s 1-D theory of beams, many 2-D equations were obtained by including shear deformation and correction factor (4,5).
      In 1951, Mindlin deduced a 2-D theory of flexural motions of isotropic elastic plates from the 3-D equations of elasticity (6). It was shown that with a correction factor the predicted dispersion curves of straight-crested waves agree closely with those from the 3-D theory. These equations and the subsequent ones for crystal plates (1951) and piezoelectric plates (1952) have since become well known worldwide in applied mechanics, structures, frequency control, and ultrasonics, and are generally referred to as the Mindlin (first-order) plate equations (7,8).
      By expanding displacement in a series of trigonometrical functions, which are the simple thickness modes of an infinite plate and by following a general method of deduction of Mindlin (9), 2-D equations were obtained by Lee and Nikodem for isotropic plates in 1972 (10), for anisotropic plates in 1974 (11), and by Lee, Syngellakis, and Hou for piezoelectric plates in1987 (12). Computed dispersion curves agree closely with the exact ones and attain the exact cut-off frequencies for each successive high-order approximation, except for the lowest frequency branch of flexural mode which is not as accurate as that obtained from Mindlin’s equations.
      By adding to the afore mentioned series a term linear in the thickness coordinate to accommodate the in-plane displacements induced by the gradients of deflection in low-frequency flexural motions or static bending, a system of 2-D equations of flexural vibrations are obtained for isotropic, elastic plates (13). Although the form of coupled equations of thickness shear and flexural motions is different from that of Mindlin’s first –order equations (9), the single governing equation in plate deflection is shown to be identical to the corresponding one by Mindlin (6), and the dispersion relations from both systems are shown to be identical. Hence the present system of equations has been shown analytically to be equivalent to the Mindlin first- order equations without introducing any correction factors.
      The same method of displacement expansion has been applied to piezoelectric crystals and ceramics and for higher- order approximations (14-16).
     
     
    References
    1. S. Timoshenko, History of Strength of Materials, McGraw-Hill , New York , 1953, p.119.
    2. S. Germain, “Recherches sur la theorie des surfaces elastiques,” Courcier, Paris, 1821.
    3. S. Timoshenko, D Young, and W Weaver, Jr., Vibration  Problems in Engineering, John Wiley & Sons, New York , 1974, p. 432.
    4. Ya. S. Uflyand, “The propagation of waves in transverse vibrations of bars and plates,” Akad. Nauk SSSR, Prikl. Mat. Meh., vol. 12, 1948, pp.287-300.
    5. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” J. Appl. Mech., vol. 67, 1945, p. A-69.
    6. R.D. Mindlin,” Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,” J. Appl. Mech., vol. 18, 1951, pp. 31-38.
    7. R.D. Mindlin, “Thickness shear and flexural vibrations of crystal plates,” J. Appl. Phys., vol. 22, 1951, pp. 316-323.
    8. R.D. Mindlin, “Forced thickness shear and flexural vibrations of piezoelectric crystal plates,” J. Appl. Phys., vol. 23, 1952, pp. 83-88.
    9. R.D. Mindlin, “An introduction to the mathematical theory of vibrations of elastic plates, ” U.S. Army Signal Corps Engineering Laboratories, Fort Monmouth , NJ , 1955. The same monograph is available in book form, ed. by J. Yang, World Scientific, New Jersey , 2006.
    10. P.C.Y. Lee and Z. Nikodem, “An approximate theory for high-frequency vibrations of elastic plates, Int. J. Solids Structures, vol. 8, 1972, pp581-612.
    11. Z. Nikodem and P.C.Y. Lee, “Approximate theory of vibrations of crystal plates at high frequencies,” Int. J. Solids Structures, vol. 10, 1974, pp. 177-196.
    12. P.C.Y. Lee, S. Syngellakis , and J.P. Hou, “A two-dimensional theory for vibrations of piezoelectric crystal plates with or without electrodes,” J. Appl. Phys., vol. 61, no.4, 1987, pp 1249-1262.
    13. P.C.Y. Lee, “An accurate two-dimensional theory of vibrations of isotropic, elastic plates,” Proc. 2006 IEEE International Frequency Control Symposium. Also accepted in 2010 for publication in Acta Mechanica Solida Sinica.
    14. P.C.Y. Lee, J.D. Yu, and W.S. Lin,” A two-dimensional theory for vibations of piezoelectric crystal plates with electrodes faces,” J. Appl Phys., vol. 83, no. 3 1998, pp1213-1223.
    15. R. Huang, P.C.Y. Lee, W.S. Lin, and J.-D. Yu, “Extensional, thickness-stretch and symmetric thickness-shear vibrations of piezoceramic diskes, “IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49, no. 11, 2002, pp. 1507-1515.
    16. P.C.Y. Lee, N.P. Edwards, W.S. Lin, and S. Syngellakis, “Second-order theories for extensional vibrations of piezoelectric crystal plates and strips,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49, no. 11, 2002, pp. 1497-1506.
     

     

    關(guān)閉
    主站蜘蛛池模板: 国产伦精品一区二区三区免费观看| 国产精品美乳在线观看| 欧美日韩一区电影| 日韩欧美国产精品一区| 国产日韩欧美网站| 欧美日韩乱码| 欧美日韩国产专区| 亚洲一级中文字幕| 国产精品剧情一区二区三区| 国产一级片大全| 亚洲午夜精品一区二区三区| 国产99久久九九精品免费| 精品少妇一区二区三区免费观看焕 | 午夜一区二区三区在线观看| 国产精品一区二区在线观看免费| 91精彩刺激对白露脸偷拍 | 久久国产欧美一区二区免费| 国语对白一区二区| 欧洲激情一区二区| 天天射欧美| 日韩精品一区二区中文字幕| 国产性猛交| 国产欧美一区二区在线观看| 欧美精品一区二区三区四区在线| 午夜一区二区视频| 国产精品香蕉在线的人| 精品国产区| 91影视一区二区三区| 午夜诱惑影院| 国产的欧美一区二区三区 | 8x8x国产一区二区三区精品推荐| 精品国产九九| 国产精品一二三区视频网站| 少妇高潮ⅴideosex| 国产精自产拍久久久久久蜜 | 亚洲区日韩| 亚洲精品久久久久一区二区| 欧美精品一区二区性色| 激情久久久| 久久午夜鲁丝片午夜精品| 中文字幕视频一区二区| 国产午夜精品一区二区三区最新电影| 欧美日韩国产综合另类| 国产欧美一区二区精品久久久| 国产日韩欧美视频| 欧美精品亚洲一区| 午夜影院啪啪| 中文文精品字幕一区二区| 国产一区二区电影在线观看| 国产一区二区黄| 黄色香港三级三级三级| 欧美日韩卡一卡二| 国产乱人乱精一区二视频国产精品| 欧美日韩一区电影| 午夜影院h| 99re热精品视频国产免费| 欧美一区二区三区久久久久久桃花| 狠狠色丁香久久婷婷综合_中| 国产欧美三区| 精品国产乱码一区二区三区a| 久久久久偷看国产亚洲87| 日本精品一区二区三区视频| 欧美日韩国产在线一区二区三区 | 国产一卡在线| 国产亚洲久久| 国产伦理久久精品久久久久| 中文字幕一区二区三区乱码| 午夜av资源| 国产在线一二区| 亚洲一区二区福利视频| 亚洲国产一区二区精华液| 狠狠搞av| 国产精品麻豆99久久久久久| 色吊丝av中文字幕| 一区二区三区免费高清视频| 久久夜色精品国产噜噜麻豆| 欧美一区二区三区另类| 国产精品一区不卡| 精品国产一区二区三区在线| 亚洲欧美日本一区二区三区| 91久久精品国产亚洲a∨麻豆| 97欧美精品| 国产在线精品区| 国产精品久久久久四虎| 国产区图片区一区二区三区| 国产欧美日韩一区二区三区四区| 91国内精品白嫩初高生| 亚洲精品一区,精品二区| 91超碰caoporm国产香蕉| 午夜无遮挡| 91片在线观看| 日韩av电影手机在线观看| 日韩精品一区二区三区四区在线观看| 久久国产精品久久| xxxx国产一二三区xxxx| 午夜剧场一区| 国产精品色婷婷99久久精品| 91一区二区在线观看| 欧美性受xxxx狂喷水| 中文字幕欧美日韩一区| 99精品久久久久久久婷婷| av午夜影院| 少妇又紧又色又爽又刺激视频网站| 亚洲国产精品入口| 日韩区欧美久久久无人区| 欧美一区二区三区国产精品| 午夜理伦影院| 亚洲精品www久久久久久广东 | 国产精品久久免费视频| 高清国产一区二区| 亚洲国产精品美女| 午夜看片网| 久久福利视频网| 欧美亚洲视频二区| 国产精品美女久久久免费| 96国产精品| 日韩精品一区二区久久| 满春阁精品av在线导航 | 国产91精品一区| 狠狠色丁香久久婷婷综合_中| 久久久久国产精品www| bbbbb女女女女女bbbbb国产| 精品99在线视频| 国产免费区| 亚洲欧美国产精品久久| 欧美日韩久久一区| 色乱码一区二区三在线看| 玖玖玖国产精品| 国产1区2| 欧美在线观看视频一区二区| 狠狠色狠狠色综合日日五| 日本一区二区三区免费视频| 国产精品久久久久久亚洲调教| 日韩国产精品一区二区| 国产黄一区二区毛片免下载| 国产91在| 又黄又爽又刺激久久久久亚洲精品| 51区亚洲精品一区二区三区| 日韩av一二三四区| 曰韩av在线| 999国产精品999久久久久久| 午夜影院一区| 国产精品自产拍在线观看桃花| 午夜黄色一级电影| **毛片免费| 亚洲欧美视频一区二区| 欧洲国产一区| 狠狠色噜噜狠狠狠狠| 久久99精品国产麻豆婷婷| a级片一区| 久久青草欧美一区二区三区| 国产精品综合一区二区三区| 欧美一区二区三区中文字幕| 国产91白嫩清纯初高中在线| 久久久99精品国产一区二区三区| 97久久国产亚洲精品超碰热| 亚洲欧美另类久久久精品2019| 久久精品国语| 日本一级中文字幕久久久久久| 欧美国产亚洲精品| 91狠狠操| 午夜看片网站| 国产又色又爽无遮挡免费动态图| 欧美二区在线视频| 国产日韩欧美综合在线| 久久久久偷看国产亚洲87| 精品国精品国产自在久不卡| 国产伦高清一区二区三区| 国产真实一区二区三区| 国产一区二区电影在线观看| 精品无码久久久久国产| 最新av中文字幕| 国产乱人伦偷精品视频免下载| 国产精品1区二区| 91麻豆精品国产91久久久久推荐资源 | 欧洲在线一区| 在线精品国产一区二区三区88| 国产精品刺激对白麻豆99| 在线电影一区二区| 少妇av一区二区三区| 亚洲国产欧洲综合997久久,| 激情久久影院| 中文字幕在线一区二区三区| 狠狠色狠狠色合久久伊人| 鲁一鲁一鲁一鲁一鲁一av| 日韩欧美国产第一页| 亚洲欧洲日韩| 91超碰caoporm国产香蕉| 欧美日韩激情在线| 色一情一乱一乱一区99av白浆| 国产精品偷乱一区二区三区| 一区二区三区在线观看国产| 国产一区二区电影在线观看| 日韩亚洲欧美一区二区| 91久久国产露脸精品国产| 激情久久一区二区三区| 少妇中文字幕乱码亚洲影视| 国产高清一区在线观看| 91嫩草入口| 高清欧美精品xxxxx| 国产一区免费在线| 久久亚洲综合国产精品99麻豆的功能介绍 | 国产日韩欧美网站| 欧美激情精品久久久久久免费 | 精品99在线视频| 国产欧美日韩va另类在线播放| 狠狠插影院| 99热久久精品免费精品| 国产69精品久久久久按摩| 91午夜在线| 亚洲精品日韩色噜噜久久五月| 国内少妇自拍视频一区| 综合久久一区| 国产老妇av| 97久久精品人人做人人爽| 999国产精品999久久久久久| 26uuu亚洲国产精品| 亚洲在线久久| 久久99国产综合精品| 欧美激情视频一区二区三区| 夜夜躁狠狠躁日日躁2024| 97香蕉久久国产超碰青草软件| freexxxxxxx| 国产69精品久久久久男男系列| 国产经典一区二区三区| 欧美一区二区三区四区五区六区| 亚洲欧洲日本在线观看| 好吊色欧美一区二区三区视频| 91麻豆精品国产综合久久久久久| 国产福利精品一区| 欧美精品五区| 国产97免费视频| 日韩精品一区二区中文字幕| 国产精品一区二区中文字幕| 午夜免费av电影| 亚洲一区欧美| 午夜情所理论片| 国产精品一区二区免费| 欧美日韩一区二区三区四区五区| 国产一区二区三区乱码| 日韩精品在线一区二区三区| 日韩精品少妇一区二区在线看| 国产伦精品一区二区三| 欧美在线一区二区视频| 性视频一区二区三区| 制服丝袜视频一区|