久久伊人导航,国内精品久久久久久久久久清纯,欧美日韩不卡在线,国产精品免费av片在线观看,精品一区二区三区国产,国产精品9999,午夜一级片,99riav精品免费视频观看

    航空航天學院關于普林斯頓大學Lee Chung- Yi教授學術報告的通知

    發(fā)布日期:2010-12-01來源:航空航天學院作者:系統(tǒng)管理員訪問量:12433

    時間:2010年12月3號下午15:00pm—17:00pm
    地點:浙江大學玉泉校區(qū)教十二118室
    題目:Theory of Vibrations of Plates:Its Evolution and Applications to Piezoelectric Crystals and Ceramics
    報告人:Professor Emeritus of Civil and Environmental Engineering
    主持人:陳偉球教授 
     
     
    Theory of Vibrations of Plates: Its Evolution and Applications to
    Piezoelectric Crystals and Ceramics
     
    P. C. Y. Lee (Lee Chung- Yi)
    Professor Emeritus of Civil and Environmental Engineering
    Princeton University
    Princeton, NJ 08540
     
     
      In 1809, the French Academy invited Chladni to give a demonstration of his experiments on nodal lines and frequencies of various modes of thin, vibrating plates. It was said that the emperor Napolean attended the meeting, was very impressed, and suggested the Academy to establish an extraordinary prize for the “ problem of deriving a mathematical theory of plate vibration and of comparing theoretical results with those obtained experimentally ”(1). Sophie Germain entered the competition and won the prize in 1816. Thus, the classical equation of flexural vibrations of elastic plates or the Germain- Lagrange plate equation (1811-1816) was born (2). The application of the theory was limited to waves which are long as compared to the thickness of the plate and to frequencies of low-order modes. These limitations are similar to those for the classical equation of flexural vibrations of beams or the Bernoulli-Euler beam equation (1725-1736).
    In the case of beam theory, it was Timoshenko (1921) who made significant advancement by including transverse shear deformation and introducing a shear correction factor in his derivation. His equation gives satisfactory results for short waves and high modes and since is called the Timoshenko beam equation (3). Analogous to Timoshenko’s 1-D theory of beams, many 2-D equations were obtained by including shear deformation and correction factor (4,5).
      In 1951, Mindlin deduced a 2-D theory of flexural motions of isotropic elastic plates from the 3-D equations of elasticity (6). It was shown that with a correction factor the predicted dispersion curves of straight-crested waves agree closely with those from the 3-D theory. These equations and the subsequent ones for crystal plates (1951) and piezoelectric plates (1952) have since become well known worldwide in applied mechanics, structures, frequency control, and ultrasonics, and are generally referred to as the Mindlin (first-order) plate equations (7,8).
      By expanding displacement in a series of trigonometrical functions, which are the simple thickness modes of an infinite plate and by following a general method of deduction of Mindlin (9), 2-D equations were obtained by Lee and Nikodem for isotropic plates in 1972 (10), for anisotropic plates in 1974 (11), and by Lee, Syngellakis, and Hou for piezoelectric plates in1987 (12). Computed dispersion curves agree closely with the exact ones and attain the exact cut-off frequencies for each successive high-order approximation, except for the lowest frequency branch of flexural mode which is not as accurate as that obtained from Mindlin’s equations.
      By adding to the afore mentioned series a term linear in the thickness coordinate to accommodate the in-plane displacements induced by the gradients of deflection in low-frequency flexural motions or static bending, a system of 2-D equations of flexural vibrations are obtained for isotropic, elastic plates (13). Although the form of coupled equations of thickness shear and flexural motions is different from that of Mindlin’s first –order equations (9), the single governing equation in plate deflection is shown to be identical to the corresponding one by Mindlin (6), and the dispersion relations from both systems are shown to be identical. Hence the present system of equations has been shown analytically to be equivalent to the Mindlin first- order equations without introducing any correction factors.
      The same method of displacement expansion has been applied to piezoelectric crystals and ceramics and for higher- order approximations (14-16).
     
     
    References
    1. S. Timoshenko, History of Strength of Materials, McGraw-Hill , New York , 1953, p.119.
    2. S. Germain, “Recherches sur la theorie des surfaces elastiques,” Courcier, Paris, 1821.
    3. S. Timoshenko, D Young, and W Weaver, Jr., Vibration  Problems in Engineering, John Wiley & Sons, New York , 1974, p. 432.
    4. Ya. S. Uflyand, “The propagation of waves in transverse vibrations of bars and plates,” Akad. Nauk SSSR, Prikl. Mat. Meh., vol. 12, 1948, pp.287-300.
    5. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” J. Appl. Mech., vol. 67, 1945, p. A-69.
    6. R.D. Mindlin,” Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,” J. Appl. Mech., vol. 18, 1951, pp. 31-38.
    7. R.D. Mindlin, “Thickness shear and flexural vibrations of crystal plates,” J. Appl. Phys., vol. 22, 1951, pp. 316-323.
    8. R.D. Mindlin, “Forced thickness shear and flexural vibrations of piezoelectric crystal plates,” J. Appl. Phys., vol. 23, 1952, pp. 83-88.
    9. R.D. Mindlin, “An introduction to the mathematical theory of vibrations of elastic plates, ” U.S. Army Signal Corps Engineering Laboratories, Fort Monmouth , NJ , 1955. The same monograph is available in book form, ed. by J. Yang, World Scientific, New Jersey , 2006.
    10. P.C.Y. Lee and Z. Nikodem, “An approximate theory for high-frequency vibrations of elastic plates, Int. J. Solids Structures, vol. 8, 1972, pp581-612.
    11. Z. Nikodem and P.C.Y. Lee, “Approximate theory of vibrations of crystal plates at high frequencies,” Int. J. Solids Structures, vol. 10, 1974, pp. 177-196.
    12. P.C.Y. Lee, S. Syngellakis , and J.P. Hou, “A two-dimensional theory for vibrations of piezoelectric crystal plates with or without electrodes,” J. Appl. Phys., vol. 61, no.4, 1987, pp 1249-1262.
    13. P.C.Y. Lee, “An accurate two-dimensional theory of vibrations of isotropic, elastic plates,” Proc. 2006 IEEE International Frequency Control Symposium. Also accepted in 2010 for publication in Acta Mechanica Solida Sinica.
    14. P.C.Y. Lee, J.D. Yu, and W.S. Lin,” A two-dimensional theory for vibations of piezoelectric crystal plates with electrodes faces,” J. Appl Phys., vol. 83, no. 3 1998, pp1213-1223.
    15. R. Huang, P.C.Y. Lee, W.S. Lin, and J.-D. Yu, “Extensional, thickness-stretch and symmetric thickness-shear vibrations of piezoceramic diskes, “IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49, no. 11, 2002, pp. 1507-1515.
    16. P.C.Y. Lee, N.P. Edwards, W.S. Lin, and S. Syngellakis, “Second-order theories for extensional vibrations of piezoelectric crystal plates and strips,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49, no. 11, 2002, pp. 1497-1506.
     

     

    關閉
    主站蜘蛛池模板: 2021天天干夜夜爽| 国产在线一区不卡| 亚洲国产精品一区二区久久hs| 一级女性全黄久久生活片免费| 国产视频在线一区二区| 欧美一区二区三区久久久久久桃花 | 亚洲精品日韩在线| 九九久久国产精品| 99久久精品一区二区| 狠狠色丁香久久综合频道 | 日本一二三不卡| 国产一级自拍片| 少妇av一区二区三区| 一本一道久久a久久精品综合蜜臀 国产三级在线视频一区二区三区 日韩欧美中文字幕一区 | 午夜剧场一区| 日韩精品午夜视频| 国产69精品久久久| 精品国产鲁一鲁一区二区三区| 99精品小视频| 久久天天躁狠狠躁亚洲综合公司 | 97人人模人人爽视频一区二区 | 久久狠狠高潮亚洲精品| av毛片精品| 日韩亚洲精品视频| 十八无遮挡| 国产va亚洲va在线va| 日韩精品午夜视频| 午夜精品999| 日本中文字幕一区| 久久免费视频一区| 国产一区二区大片| 欧美精品免费看| 特级免费黄色片| 亚洲欧美色图在线| 性国产日韩欧美一区二区在线 | 午夜电影院理论片做爰| 国产欧美一区二区在线| 亚洲精品国产精品国自| 欧美日韩国产一区二区三区在线观看| 日本神影院一区二区三区| 香港三日本三级三级三级| 精品一区电影国产| 国产欧美一区二区三区免费视频| 久久久精品中文| 欧美国产一区二区三区激情无套| 狠狠色噜噜狼狼狼色综合久| 国产1区2| 日韩av中文字幕在线免费观看| 狠狠色噜噜狠狠狠狠| 中文丰满岳乱妇在线观看| 国产一区二三| 国产欧美一区二区三区不卡高清| 欧美精品中文字幕在线观看| 国内久久久| 日韩精品一区中文字幕| 爽妇色啪网| 91麻豆精品国产91久久久更新资源速度超快 | 日韩欧美中文字幕一区| 欧美精品中文字幕亚洲专区| 午夜特片网| 国产精品久久久久久久岛一牛影视| 久久一区欧美| 久久99精品久久久久婷婷暖91| 欧美hdxxxx| 国产99久久九九精品免费| 精品国产一区二区三区高潮视 | 99精品久久99久久久久| 国产91一区二区在线观看| 国产精品入口麻豆九色| 国产一区二区视频免费观看| 在线国产一区二区| 欧美高清极品videossex| 日韩亚洲精品视频| 挺进警察美妇后菊| 欧美日韩一卡二卡| 88国产精品视频一区二区三区| 99国产精品免费观看视频re| 国产主播啪啪| 一区二区不卡在线| 国产一区二区三区国产| 国产精品电影一区| 亚洲精品卡一| 三级午夜片| 国产精品久久久久久久久久久杏吧| 日本大码bbw肉感高潮| 99久久国产综合精品麻豆| 国产精品99999999| 三上悠亚亚洲精品一区二区| 国产精品视频久久久久| av不卡一区二区三区| 亚洲午夜精品一区二区三区| 国产精品亚洲欧美日韩一区在线| 日本精品三区| 99re热精品视频国产免费| 国产日韩麻豆| 久久精品国产综合| 国产欧美www| 性色av色香蕉一区二区三区| 久久精品国产久精国产| 亚洲国产午夜片 | 国产农村乱色xxxx| 久久99精品一区二区三区| 国产二区不卡| 欧美精品久| 亚洲国产精品入口| 香蕉视频一区二区三区| 国产精品女人精品久久久天天| 国产精品综合久久| 91精品www| 国产资源一区二区三区| 亚洲少妇中文字幕| 国产精品一级在线| 午夜一二区| 草逼视频网站| 强行挺进女警紧窄湿润| 色就是色欧美亚洲| 国产精品一区二区在线观看 | 久久久人成影片免费观看| 欧美一区二区色| 国产精品人人爽人人做av片| 亚洲国产欧美国产综合一区| 一区二区三区欧美视频| 午夜精品在线观看| 亚洲一区二区国产精品| 国产一区二区三区色噜噜小说| 欧美一区二区免费视频| 国产一区二区四区| 国产午夜精品理论片| 日韩av在线播| 欧美一区二区三区白人| 曰韩av在线| 日韩一区免费在线观看| 精品国产区| 91在线一区| 欧美国产三区| 亚洲精品国产精品国自| 亚洲欧美国产精品一区二区| 色乱码一区二区三区网站| 欧美乱大交xxxxx| 欧美午夜羞羞羞免费视频app| 亚洲精品中文字幕乱码三区91| 欧美一区二区在线不卡| 日本一区午夜艳熟免费| 国产999在线观看| 欧美精品国产一区二区| 国产精品久久久不卡| 国产电影精品一区| 91久久国产露脸精品国产护士| 欧美日韩亚洲另类| 国产精品欧美久久| 亚洲精品卡一卡二| 国产免费区| 欧美精品亚洲一区| 99re热精品视频国产免费| 国产69久久| 久久久国产精品一区| 日韩欧美一区二区在线视频| 欧美乱妇在线观看| 国产一区二区四区| 一区二区不卡在线| 91久久免费| 国产不卡三区| 国产一区日韩精品| 91麻豆精品国产91久久久久| 欧美日韩精品影院| 狠狠色很很在鲁视频| 午夜精品在线播放| 一区二区三区国产精华| 国产乱码精品一区二区三区中文| 国产精品国外精品| 在线精品视频一区| 97国产精品久久| 国产精品久久久久久久龚玥菲| 蜜臀久久99精品久久久| 亚洲欧美一区二区精品久久久| 四虎国产永久在线精品| 91视频国产九色| 国产国产精品久久久久| 欧美大成色www永久网站婷| 91超碰caoporm国产香蕉| 午夜无遮挡| 在线观看国产91| 午夜电影一区二区三区| 欧洲另类类一二三四区| 久免费看少妇高潮a级特黄按摩| 农村妇女精品一区二区| 国产精品麻豆一区二区| 久久99国产综合精品| 久久精品国产亚洲一区二区| 午夜欧美a级理论片915影院| 日韩精品一区二区亚洲| 亚洲国产精品二区| 少妇高潮在线观看| 欧美一区免费| 色吊丝av中文字幕| 国产乱子一区二区| 欧美在线视频三区| 日本一二三区电影| 亚洲**毛茸茸| 国产日韩欧美另类| 国产亚洲精品久久久456| 国模一区二区三区白浆| 亚洲少妇中文字幕| 91久久香蕉国产日韩欧美9色| 日韩av片无码一区二区不卡电影| 久久99精品国产麻豆婷婷| 羞羞视频网站免费| 视频一区二区中文字幕| 日本一区二区三区四区高清视频| 国产精品视频十区| 日本xxxx护士高潮hd| 96国产精品| 91热国产| 国产精品视频免费看人鲁| 国产一区二区中文字幕| 欧美精品日韩| 欧美一区二区三区久久精品视| 国产精一区二区三区| 久久99久国产精品黄毛片入口| 日韩av在线高清| 亚洲va国产| 国产视频二区在线观看| 久久久久久国产精品免费| 国产精品一区二区毛茸茸| 国产精品第56页| 国产乱xxxxx国语对白| 国产麻豆一区二区三区在线观看| 99精品少妇| av不卡一区二区三区| 国产91在线播放| 亚洲欧美国产精品一区二区| 浪潮av网站| 麻豆91在线| 中文字幕另类日韩欧美亚洲嫩草| 日本高清二区| 色噜噜狠狠狠狠色综合久| 国产精品久久久不卡| 久久不卡精品| 麻豆国产一区二区| 国产精品久久久不卡| 国产一区二区手机在线观看| 激情久久综合| 97国产婷婷综合在线视频,| 国产1区2区视频| 久久99精品国产麻豆宅宅| 国产精品入口麻豆九色|